Lemniscates and Equipotentials

Dorothy Browne Shaffer* ${ }^{*}$
Department of Mathematics, Fairfield University, Fairfield, Connecticut 06430

Communicated by Oved Shisha
Received October 6, 1970

DEDICATED TO PROFESSOR J. L. WALSH
ON THE OCCASION OF HIS 75TH BIRTHDAY

This paper deals with several generalizations to surfaces in R^{n} of geometric properties of lemniscates and level curves in the plane. A lemniscate in the plane is defined as a set of points $L \rho:\left\{\prod_{i=1}^{n}\left|z-z_{i}\right|=\rho^{n}\right\}(\rho>0)$. The lemniscates $L \rho$ can be described (a) as the level curves of polynomials; (b) as the locus of points the product of whose distances from a finite set of fixed points is constant and (c) as the locus of points

$$
\sum_{i=1}^{k} \log r_{i}^{-1}=\mathrm{const} \quad\left(r_{i}=\left|z-z_{i}\right|\right)
$$

the left hand side being a sum of fundamental solution in R^{2} of Laplace's equation.

In higher dimensions, the three interpretations corresponding to (a), (b) and (c) are not equivalent any longer.

The lemniscate surface in R^{n} based on definition (a), as a level surfaces of a polynomial in n real variables, was introduced by Nagy [2] in 1950, and the idea was extended to level surfaces of rational functions by Schurer [4].

The concept of a lemniscate based on interpretation (c) was first generalized to R^{3} by Polya and Szego [3] who defined a lemniscate surface as a locus $\sum_{k=1}^{n} r_{k}^{-1}=$ cont., r_{k} being again the distance of the variable point from a fixed one. Our definition of a lemniscate surface in R^{n}, corresponding to definition (c) in the plane, will be $\sum_{k=1}^{p} m_{k} r_{k}^{2-n}=$ const, $m_{k}>0, n \geqslant 3$, with the same meaning of r_{k}. Negative values of m_{k} are also considered.

[^0]Both interpretations (b) and (c) are special cases of equipotential surfaces to be studied in this paper; these are defined as follows:

Let E_{1} and E_{2} be compact, convex sets in $R^{n}, E_{1} \cap E_{2}=\varnothing ; \mu$ a positive bounded measure defined on R^{n} with support on $E_{1} \cup E_{2}$. Let $\Phi(r)$ be a decreasing function on $(0, \infty) ; \Phi(r) \in C^{2}$. Let x_{0} denote a point of $R^{n}-\left(E_{1} \cup E_{2}\right)$. Consider the potentials $V\left(x_{0}\right)=\int_{E_{1}} \Phi\left(r_{1}\right) d \mu$ and

$$
U\left(x_{0}\right)=\int_{E_{1}} \Phi\left(r_{1}\right) d \mu-\int_{E_{2}} \Phi\left(r_{2}\right) d \mu
$$

Here r_{i} denotes the distance from x_{0} to $x_{i}, x_{i} \in E_{i}, i=1,2$. We set

$$
V_{\lambda}=\left\{x_{0} \mid V\left(x_{0}\right)=\lambda\right\}, \quad U_{\lambda}=\left\{x_{\mathbf{0}} \mid U\left(x_{0}\right)=\lambda\right\} .
$$

The surfaces V_{λ}, in this general form, were first investigated by Kahane [1]. In the present paper generalizations to the surfaces V_{λ} and U_{λ} are given of geometric inequalities derived by the author for level curves of Green's function in the plane [5, 7] and rational functions [6].

Our first result is a generalization of a theorem on the bisector of a chord of a level curve of Green's function [5, Theorem 1].

Theorem 1. Let M_{1}, M_{2} be (distinct) points of some V_{λ}. Denote the midpoint of the segment $M_{1} M_{2}$ by M. Then the hyperplane Π through M, normal to the segment $M_{1} M_{2}$, must intersect E_{1}.

Proof. If we assume M_{1} and all points of E_{1} lie in the same half space defined by Π, that is, the distance $r_{M_{1} P}$ of M_{1} from P is smaller than $r_{M_{2} p} p$ for all $P \in E_{1}$, then $\Phi\left(r_{M_{1} P}\right)>\Phi\left(r_{M_{2} P}\right)$ and $V\left(M_{1}\right)>V\left(M_{2}\right)$; thus we arrive at a contradiction.

Corollary. Each normal to V_{λ} must intersect E_{1}.
This was proved as an independent theorem by Kahane [1, Theorem 1].
Theorem 2. Let M_{1}, M_{2} be distinct points of some U_{λ}, and let $M=\frac{1}{2}\left(M_{1}+M_{2}\right)$, and Π be the hyperplane through M, normal to $M_{1} M_{2}$. Then Π cannot separate E_{1} and E_{2}.

Proof. Assume the contrary, so that e.g., $\Phi\left(r_{M_{1} P_{1}}\right)>\Phi\left(r_{M_{2} P_{1}}\right)$ for all $P_{1} \in E_{1}$ and $\Phi\left(r_{M_{1} P_{2}}\right)<\Phi\left(r_{M_{2} P_{2}}\right)$ for all $P_{2} \in E_{2}$. This implies $U\left(M_{1}\right)>U\left(M_{2}\right)$.

Corollary. Let N denote a normal to some U_{λ}. A hyperplane through point M_{2} on U_{λ}, containing N, cannot separate E_{1} and E_{2}.

The proof follows by using Theorem 2 and letting M_{1} approach M_{2}.

Theorem 3. Assume that the set E_{1} is contained in a half space S_{1} bounded by a hyperplane π. Let S_{2} be the complimentary half space $R^{n}-S_{1}$. Then a normal q to π can contain at most one point of $V_{\lambda} \cap S_{2}$, for any equipotential V_{λ}.

Proof. Assume there exist distinct points M_{1}, M_{2} lying on $V_{\lambda} \cap S_{2} \cap q$. Then the hyperplane through their midpoint orthogonal to q will be parallel to π and cannot intersect E_{1}. Theorem 1 is contradicted.

Theorem 4. Let E_{1} be contained in a ball B, with center Ω. Then any surface V_{λ} lying outside of B is star-shaped with respect to Ω.

Proof. Let P be an arbitrary point of V_{λ}. Then the hyperplane tangent to B and orthogonal to the ray from Ω to P separates E from V_{λ}, and by Theorem 2 it cannot have a second intersection with V_{λ}.

Theorem 5. Let E_{1} be contained in a ball B of radius a. Let some V_{λ} intersect a concentric sphere of radius $\lambda a, \lambda \geqslant 1$; then V_{λ} can intersect no concentric sphere of radius greater than $(\lambda+2) a$.

The proof is similar to that of Theorem 1 in [5, p. 61].
The next theorem furnishes a bound on the radius of curvature of curves lying on the U_{λ}. This result generalizes those of Theorem 3 in [6]. The corresponding theorem for the surfaces V_{λ} is due to Kahane [1, Theorem 3].

Theorem 6. Let the surfaces U_{λ} be defined as above. Let the function $\Phi(r)$ satisfy the inequalities

$$
\begin{equation*}
0<r \Phi^{\prime \prime}(r) \leqslant-(\alpha+1) \Phi^{\prime}(r), \quad \alpha \geqslant 0 \tag{1}
\end{equation*}
$$

Let E_{1} be contained in a half space S_{1} bounded by a hyperplane π_{1}, and let E_{2} be contained in a half space S_{2} bounded by a hyperplane π_{2} parallel to π_{1}; $S_{1} \cap S_{2}=\varnothing$. Let P be an arbitrary point in $R^{n}-\left(S_{1} \cup S_{2}\right)$. Denote by N the (vector) normal to U_{λ} at P. Let $A_{1}=N \cap \pi_{1}$, and $A_{2}=N \cap \pi_{2}$. Let C be a curve lying on U_{λ} with N as a normal.

Then the radius of curvature of C is numerically greater than

$$
(\alpha+1)^{-1} \min \left(r_{P A_{1}}, r_{P A_{2}}\right)
$$

Proof. Write $\Phi(r)=\varphi\left(r^{2}\right)$. Then

$$
N=\operatorname{grad} U=2 \int_{E_{1}}\left(x-x_{1}\right) \varphi^{\prime}\left(r_{1}^{2}\right) d \mu-2 \int_{E_{2}}\left(x-x_{2}\right) \varphi^{\prime}\left(r_{2}^{2}\right) d \mu
$$

Orient the space so that N has the direction of the nth coordinate axis, and P is the origin. Suppose S_{1} is the half space

$$
x^{n}>a_{1} x^{1}+\cdots a_{n-1} x^{n-1}+b
$$

and S_{2} is the half space

$$
x^{n}<a_{1} x^{1}+\cdots a_{n-1} x^{n-1}-B
$$

where ($x^{1}, x^{2} \cdots x^{n}$) is the variable point and b, B are some positive constants.
For our choice of the coordinate system,

$$
\int-x_{1}{ }^{i} \varphi^{\prime}\left(r_{1}{ }^{2}\right) d \mu-\int-x_{2}{ }^{i} \varphi^{\prime}\left(r_{2}{ }^{2}\right) d \mu=0 \quad \text { for } \quad i=1,2, \ldots, n-1
$$

where $x_{i}=\left(x_{i}{ }^{1}, x_{i}{ }^{2}, \ldots, x_{i}{ }^{n}\right), i=1,2$, and

$$
\|N\|=N^{n}>2 \int b\left(-\varphi^{\prime}\left(r_{1}\right)\right) d \mu+2 B \int\left(-\varphi^{\prime}\left(r_{2}\right)\right) d \mu>0
$$

Let $\dot{x}=d x / d s$ be the unit vector tangent at P to the curve C, where s denotes arc length on C. Then

$$
\begin{align*}
-\frac{1}{2} \dot{x} \cdot \dot{N}= & \int-\varphi^{\prime}\left(r_{1}{ }^{2}\right) d \mu-\int-\varphi^{\prime}\left(r_{2}^{2}\right) d \mu \\
& -2\left[\int\left(x_{1} \cdot \dot{x}\right)^{2} \varphi^{\prime \prime}\left({r_{1}}^{2}\right) d \mu-\int\left(x_{2} \cdot \dot{x}\right)^{2} \varphi^{\prime \prime}\left(r_{2}^{2}\right) d \mu\right] \tag{2}
\end{align*}
$$

We may assume $b<B$.
There are two cases.
Case 1. $-\dot{x} \cdot \dot{N}>0$. We have to prove

$$
\begin{equation*}
\ddot{x}=-(\dot{x} \cdot \dot{N} /\|N\|)<(\alpha+1) / b \tag{3}
\end{equation*}
$$

By substitution of (2) into (3) we obtain

$$
\begin{align*}
& \alpha \int-\varphi^{\prime}\left(r_{1}^{2}\right) d \mu+\left\{\frac{B}{b}(1+\alpha)+1\right\} \int-\varphi^{\prime}\left(r_{2}^{2}\right) d \mu \\
& \quad+2 \int\left(x_{1} \cdot \dot{x}\right)^{2} \varphi^{\prime \prime}\left(r_{1}^{2}\right) d \mu-2 \int\left(x_{2} \cdot \dot{x}\right)^{2} \varphi^{\prime \prime}\left(r_{2}^{2}\right) d \mu>0 . \tag{4}
\end{align*}
$$

The first and third terms in (4) are positive. The inequality (3) would follow if

$$
\int\left[(2+\alpha)\left(-\varphi^{\prime}\left(r_{2}^{2}\right)\right)-2\left(x_{2} \cdot \dot{x}\right)^{2} \varphi^{\prime \prime}\left(r_{2}^{2}\right)\right] d \mu>0
$$

Hypothesis (1) implies that $\varphi^{\prime \prime}\left(r^{2}\right) \leqslant-\left[(\alpha+2) \varphi^{\prime}\left(r^{2}\right) / 2 r^{2}\right]$. Since $\left(x_{2} \cdot \dot{x}\right)^{2} \leqslant r_{2}{ }^{2}$, the result (4) follows.

Case 2. $\ddot{x}<0$. This case can be treated similarly to Case 1 .
Remark. The inequality (1), with $\alpha=0$, is satisfied by the logarithmic potential and also (for $\alpha>0$) by the potential $\varnothing(r)=r^{-\alpha}$.

The following Theorems 7 and 8 will be proved for the specialized case where $\Phi(r) \equiv \log (1 / r)$ and μ is a discrete point measure. This corresponds to the extension of the definition of a lemniscate based on interpretation (b), that is,

$$
\begin{equation*}
V_{\lambda}=\left\{x \mid \sum_{j=1}-m_{j} \log r_{j}=\lambda\right\}, \quad m_{j}>0 \tag{5}
\end{equation*}
$$

The first theorem represents an extension of Walsh's theorem [9, p. 13] to n dimensions. In the proof we shall require the following coincidence lemma:

Lemma 1. Let $x_{1}, x_{2}, \ldots, x_{n}$ lie in a ball B in R^{n}, and let $m_{1}, m_{2}, \ldots, m_{n}$ be positive. Then for every $x \in R^{n}-B$ there exists an $x_{0} \in B$ such that

$$
\frac{1}{M} \sum_{k=1}^{n} \frac{m_{k}\left(x-x_{k}\right)}{\left\|x-x_{k}\right\|^{2}}=\frac{x-x_{0}}{\left\|x-x_{0}\right\|^{2}},
$$

where $M=\sum_{k=1}^{n} m_{k}$.
Proof. Inversion in a sphere with center x transforms B one-to-one onto a ball B^{1}.

The image ξ_{k} of $x_{k} \in B$ is given by

$$
\xi_{k}=-\frac{x-x_{k}}{\left\|x-x_{k}\right\|^{2}}+x
$$

Now $M^{-1} \sum m_{k} \xi_{k}$, the center of gravity of the ξ_{k}, lies in B^{1}; therefore its antecedent $x_{0} \in B$.

Our extension of Walsh's Theorem deals with the critical points of a lemniscate surface

$$
\begin{equation*}
V_{\lambda}=\{x \mid V(x)=\lambda\} \tag{6}
\end{equation*}
$$

where

$$
V(x) \equiv \sum_{k=1}^{p} m_{k} \log \left[1 /\left\|x-x_{k}\right\|\right]+\sum_{i=1}^{q} \mu_{i} \log \left[1 /\left\|x-y_{i}\right\|\right]
$$

where the fixed points x_{k} lie in a ball B_{1} and the fixed points y_{i} in a ball B_{2}.

Theorem 7. All the critical points of the lemniscate surface (6) (i.e., the points of (6) for which grad $V=0$) lie in B_{1}, B_{2} and a third ball with center $\left(M_{2} a_{1}+M_{1} a_{2}\right) /\left(M_{1}+M_{2}\right)$ and radius $\left(M_{2} r_{1}+M_{1} r_{2}\right) /\left(M_{1}+M_{2}\right) ; a_{1}$ and a_{2} denote the centers of B_{1} and B_{2}, respectively, r_{1}, r_{2} denote their radii,

$$
M_{1}=\sum_{k=1}^{p} m_{k}, \quad M_{2}=\sum_{i=1}^{q} \mu_{i}
$$

Proof. The critical points of (6) satisfy

$$
\sum_{k=1}^{D} m_{k} \frac{x-x_{k}}{r_{k}^{2}}+\sum_{i=1}^{q} \mu_{i} \frac{x-y_{i}}{r_{i}^{2}}=0 .
$$

The proof of the theorem follows by application of the coincidence lemma for both B_{1} and B_{2}, and by considerations similar to the proof of the original theorem in the plane [9, pp. 13-15].

The next theorem generalizes Corollary 1 of Theorem 4 in [5] which gives sharp bounds for the curvature of lemniscates and level curves of Green's function.

Theorem 8. Let E_{1} be contained in a ball of radius a. Then the surface (5) is convex if it lies outside of the concentric ball of radius $\sqrt{2} a$.

Proof. The notation used will be the same as in Theorem 6. We obtain for the normal N to V_{λ} at the point x :

$$
\begin{equation*}
\operatorname{grad} V_{\lambda}=N=-\sum_{j=1}^{n} m_{j} \frac{x-x_{j}}{r_{j}^{2}} \tag{7}
\end{equation*}
$$

Here $x_{1}, x_{2}, \ldots, x_{n}$ denote points in E_{1}.
Let C be any curve on V_{λ} whose normal at x has the direction of N or of $-N$. We shall prove that necessarily \ddot{x} has there the direction of N. The convexity of V then follows. Since $N \cdot \dot{x}=0$ along C, we have there

$$
\dot{N} \cdot \ddot{x}+N \cdot \ddot{x}=0
$$

We shall prove that at $x,-\dot{N} \cdot \dot{x} \geqslant 0$. By differentiation of (7), we obtain

$$
\begin{equation*}
-\dot{N} \cdot \dot{x}=\sum_{j=1}^{n} \frac{m_{j}}{r_{j}^{2}}-2 \sum_{j=1}^{n} \frac{m_{j}}{r_{j}{ }^{4}}\left(x-x_{j} \cdot \dot{x}\right)^{2} \tag{8}
\end{equation*}
$$

with the auxiliary condition

$$
\begin{equation*}
N \cdot \dot{x}=\sum_{j=1}^{n} \frac{m_{j}}{r_{j}^{2}}\left(x-x_{j} \cdot \dot{x}\right)=0 \tag{9}
\end{equation*}
$$

Let the fixed points x_{j} be divided into two classes:

$$
\begin{aligned}
& x_{1 j} \text { denote } x_{j} \text { for which }\left(x-x_{j}\right) \cdot \dot{x} \geqslant 0, \\
& x_{2 j} \text { denote } x_{j} \text { for which }\left(x-x_{j}\right) \cdot \dot{x}<0 .
\end{aligned}
$$

The sum (7) can be rearranged as follows:

$$
\begin{equation*}
N=\sum_{i=1}^{k} M_{i} n_{i} \tag{10}
\end{equation*}
$$

where

$$
\begin{array}{r}
n_{i} \cdot \dot{x}=0, \quad \sum_{i=1}^{k} M_{i}=\sum_{j=1}^{n} m_{j}, \quad n_{i}=l_{i} \frac{x_{1 i}-x}{r_{1 i}^{2}}+\left(1-l_{i}\right) \frac{x_{2 i}-x}{r_{2 i}^{2}} \\
1 \geqslant l_{i} \geqslant 0, \quad i=1,2, \ldots, k \tag{11}
\end{array}
$$

These conditions imply that n_{i} lies in the plane containing $x, x_{1 i}$ and $x_{2 i}$ and is orthogonal to \dot{x}. We will prove that $-\dot{n}_{i} \cdot \dot{x} \geqslant 0$ for all i.

By differentiation of n_{i} in (11) and inner multiplication by \dot{x} we obtain (the subscript i is dropped for simplicity):

$$
\begin{align*}
-\dot{n} \cdot \dot{x}= & \|n\|^{2}+\left\|n-\frac{x_{1}-x}{r_{1}{ }^{2}}\right\|\left\|n-\frac{x_{2}-x}{r_{2}{ }^{2}}\right\| \\
& -\left[\left(\frac{x_{1}-x}{r_{1}{ }^{2}}-n\right) \cdot \dot{x}\right]\left[\left(n-\frac{x_{2}-x}{r_{1}{ }^{2}}\right) \cdot \dot{x}\right] \\
\geqslant & \|n\|^{2}-\left\|n-\frac{x_{1}-x}{r_{1}{ }^{2}}\right\|\left\|n-\frac{x_{2}-x}{r_{2}{ }^{2}}\right\| . \tag{12}
\end{align*}
$$

Condition (12) is equivalent to the geometric condition that the angle between the vectors $x_{1}-x$ and $x_{2}-x$ is acute; this condition is assured by the hypothesis of the theorem. It follows that $n_{i} \cdot \ddot{x}$ is positive for all pairs of points $x_{1 i}$ and $x_{2 i}$ in E, and therefore $N \cdot \ddot{x}$ is positive and the curve C is convex.

References

1. J. P. Kahane, Geometrical properties of equipotential surfaces, Proc. Amer. Math. Soc. 13 (1962), 617-618.
2. Sz. G. Nagy, Über die Lemniskatenflächen, Ann. Scuola Norm. Sup. Pisa, Ser. III II (1950), 39-53.
3. G. Pólya and G. Szegö, Über den Transfiniten Durchmesser von ebenen und raumlichen Punktmengen, J. Reine Angew. Math. 165 (1931), 4-49.
4. Augusta Schurer, On the location of the zeros of the derivative of rational functions of distance polynomials, Trans. Amer. Math. Soc. 89 (1958), 100-112.
5. Dorothy Browne Shaffer, Distortion theorems for lemniscates and level loci of Green's functions, J. Analyse Math. 17 (1966), 59-70.
6. Dorothy Browne Shaffer, Distortion theorems for the level curves of rational functions and harmonic functions, J. Math. Mech. 19 (1969), 41-48.
7. Dorothy Browne Shaffer, On the convexity of lemniscates, Proc. Amer. Math. Soc. 26 (1970), 619-620.
8. J. L. Walsh, Lemniscates and equipotential curves of Green's functions, Amer. Math. Monthly 42 (1935), 1-17.
9. J. L. Walsh, "The Location of Critical Points of Analytic and Harmonic Functions," Vol. 34, Mathematical Society Colloquium Publications, Providence, RI, 1950.

[^0]: * The author gratefully acknowledges the support of the National Science Foundation, Grant GP-23504, and Science Faculty Fellowship.
 ${ }^{\dagger}$ Some of these results were first presented on August 28, 1969 at the meeting of the American Mathematical Society in Eugene, OR.

